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SPECTRAL RESPONSE OF A BILINEAR OSCILLATOR
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An approximate analytical procedure is presented to estimate the response power spectral
density of a randomly excited spring/mass/damper system having a bilinear spring. The
approximate expression for the response spectrum is developed by representing the non-
linear oscillator as a linear system having a natural frequency that depends on the envelope
of the random response. This approximate representation of the system leads to estimates
of the response spectrum that agree extremely well with those obtained by direct numerical
simulation of the governing equation.

1. INTRODUCTION

In experimental studies of the response of structures to random excitations it is very
common to characterize the response by measuring the power spectral density. Vibration
engineers are usually very familiar with this representation of the structural behavior and,
at a glance, can gain considerable insight into the system being studied. One can easily see
how many resonant modes contribute to the response by looking at the resonant peaks in
the spectrum and one can also determine whether the system is heavily or lightly damped.
There are situations, however, where non-linear effects in the structure influence the
measured power spectrum in a manner that precludes straightforward interpretation. In
cases where the response has sufficient amplitude to elicit non-linear behavior, the resonant
response peaks in the power spectrum can take a dramatically different form than those
observed in linear systems. The main goal of the present investigation is to propose a new
approximate scheme for describing the influence of structural non-linearities on the
response power spectrum. It is hoped that the present study will provide a better under-
standing of the random response of non-linear systems.

The present approximate representation of the spectrum is applied to a bilinear oscillator
in which the non-linearity has a very pronounced influence on the response spectrum.
Comparisons are presented of the estimated power spectral density obtained using the
present approximate scheme, and by direct numerical simulation of the governing equation.
Excellent agreement is observed between the two methods.

The effect of non-linearities on the response power spectral density has been studied by
a number of investigators. Early approximate analytical methods have been presented that
are based on either a perturbation approach [1] or equivalent linearization [2, 3]. These
methods are found to give reasonable results only for very small non-linearities. Other
studies based on numerical simulations have shown that in the case of a Duffing oscillator,
where the stiffness contains a cubic non-linearity and the damping is assumed to be linear,
the resonant response peak in the power spectral density tends to broaden and increase in
frequency as the level of the random excitation is increased [4-6]. This behavior has been
observed experimentally in studies of the high level random response of beams and plates
(7, 8].
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An approximate analytical procedure was proposed by the author to estimate the
response power spectrum of a Duffing oscillator with linear viscous damping [9]. The
method is based on an adaptation of the method of equivalent linearization, where the
resonant frequency of the equivalent linear system is assumed to be random. This provided
very accurate estimates of the spectrum when compared to results obtained using numerical
simulations. It has not been possible, however, to extend the method to more general non-
linear random systems. The main purpose of the present study is to propose an approxi-
mate scheme that may be applicable to a wider class of non-linear systems than studied
previously.

The basic assumption of the method proposed in reference [9] is that the response
spectrum is strongly influenced by non-linearities in the system, because in a non-linear
system the stiffness, and hence the natural frequency, depend on the response amplitude.
In a system with sufficiently light damping, the random response will behave as a narrow-
band process with an oscillation period that will vary randomly. The random variation of
the oscillation period is a direct result of the fact that the response amplitude varies
randomly The random fluctuation of the dominant oscillation frequency will lead to a
broadened resonant response peak in the power spectrum. It is reasonable to assume,
therefore, that if certain statistics are known concerning the random amplitude fluctua-
tions, and if the relationship between the system resonant frequency and amplitude is
known, then one should be able to approximate the response spectrum.

The procedure presented in the following is based on assuming that the non-linear
system may be approximated as a linear system having a natural frequency that varies
with the response amplitude in the same manner as that predicted when the non-
conservative forces are not present. It is assumed that in the damped system with random
excitation, the natural frequency depends on the envelope of the response of the original
non-linear system. The present method, thus, depends on knowledge of the statistics of
the response envelope of the original non-linear system being studied. The probability
density of the response envelope is known for several classes of non-linear systems [10].
The random fluctuations in the natural frequency are then assumed to occur much more
slowly than the fluctuations in the response. This leads to a simple formula for the response
spectrum in the form of an integration over the probability density of the envelope of the
response of the original non-linear oscillator.

The present approach has been applied to a bilinear oscillator where the restoring force
is assumed to be equal to the deflection (stiffness=1) for small deflections, and is equal
to twice the deflection (stiffness=2) when the amplitude of the deflection is greater than
unity. The damping is assumed to be linear viscous damping. This system is highly non-
linear when the random response spends a significant amount of time crossing over between
the two stiffness regimes. Numerical simulations of the random response have shown that
this bilinear stiffness characteristic has a pronounced effect on the predicted power spec-
trum. It is hoped that if accurate spectral estimates can be obtained for this rather difficult
system, then the approximate method may be applicable to a fairly broad class of oscilla-
tors. Comparisons of spectra obtained using the present approximate scheme with those
obtained using numerical simulations are presented and show excellent agreement.

As discussed above, the main purpose of the present study is to propose a description
of the influence of non-linearities on the power spectra of random structures with random
excitation. Although the basic assumptions of the approach are plausible, a detailed error
analysis has yet to be conducted. The validity of the approach is investigated here through
a single example, the bilinear oscillator. A more detailed investigation of the influence of
a number of approximations in the procedure will be performed in a future study.
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2. APPROXIMATE REPRESENTATION OF THE NON-LINEAR SYSTEM

Consider a non-linear oscillator governed by
4 0d(x+ eg(x)) + cx=£(2), (1)

where f(¢) is Gaussian white noise, g(x) is a non-linear restoring force, w, is the natural
frequency in the absence of non-linear effects, ¢ is a constant and ¢ is a viscous damping
coefficient. For the present investigation, we consider only systems having conservative
non-linearities. The function g(x) does not depend on velocity x. Non-linear damping
effects will be left for future studies. It is also assumed that g{x) is an odd function of x,
1e., g(x)=-—g(—x).

To develop a representation of the non-linear random response, consider the behavior
of a conservative non-linear system. It is well known that in the case of conservative non-
linear systems, where ¢ and f(¢) are zero, the solution of equation (1), x(f), will consist of
an oscillation having a period that depends on the amplitude of the motion. The exact
solution for the period, 7, corresponding to an oscillation amplitude, a, is given by

—1/2

T(a)=4 f ’ [2 J ’ wd(u+ gg(u)) du} dx. (2)

e

In the case of the damped system with random excitation, described by equation (1), if
the damping coefficient ¢ is sufficiently small the response may be considered to be a
narrow-band random process. The period of the oscillation cycles can be taken to be the
time duration between occurrences of zero crossings with positive slope. The time required
for one such cycle will depend on some measure of the oscillation amplitude. This follows
from the fact that the stiffness of the non-linear system, and hence the effective natural
frequency, depend on the response amplitude.

One can also view the response in the phase plane. In the case of the conservative system
where ¢ and f(¢) are zero, the amplitude of a given orbit in the phase plane determines
the oscillation frequency. If the damping and excitation are sufficiently small, during one
cycle the orbit of the non-conservative system will consist of a small fluctuation about that
of the conservative system. If the amplitudes of the conservative and non-conservative
orbits are nearly the same, the time duration of the cycles will also be similar.

During the forced, damped response of the system described by equation (1), the ampli-
tude of the motion will vary randomly and, based on the above discussion, we can also
expect the oscillation period to vary accordingly. An approximate representation of the
response of the system described by equation (1) may then be obtained by idealizing it as
a linear system having a natural frequency that depends on the response amplitude. This
amplitude dependent natural frequency is taken to be identical to that obtained for the
conservative system,

w(a)=2n/T(a), (3)

where T(a) is given in equation (2). The oscillation frequency is thus regarded as an
intrinsic property of the system; it does not depend explicitly on the excitation or the
damping as long as the damping is sufficiently light. During the forced, damped response,
the oscillation frequency depends only on the amplitude of the motion, as in the case of
the conservative system. The amplitude a is a random quantity which, for the present
study, is taken to be equal to the envelope of the random response of the original system
in equation (1). If (¢) is Gaussian white noise, then the probability density of the envelope
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and ¥ (a) is the potential energy of the system corresponding to the response amplitude
a’

a

¥(a)= wé(az/ 2+e J g(x) dX>- (20

0
0§ is the mean square response of equation (1) when £=0,

oo=Drm/(cw}). (21)
The approximate response spectrum is then given by

[~ O,
‘p"(“’)_JO (@ (@) -0 (co)

; P(a) da. (22)

4. NUMERICAL RESULTS FOR A BILINEAR OSCILLATOR

Equation (22) has been applied to estimate the response spectrum of a bilinear system
having a non-linear restoring force as shown in Figure 1. The restoring force shown in
Figure 1 is equal to w3(x+ £g(x)) in equation (1). In the present calculations, the system
is assumed to have a linear force/deflection characteristic with unit slope when the ampli-
tude of the response is less than unity. For greater response amplitudes, the stiffness of
the system is assumed to be doubled as shown in the figure. The viscous damping coeflicient
¢ in equation (1) is taken to be 0-005 and o is unity.

The results of applying equation (22) for a range of input force spectrum levels @, are
shown in Figures 2(a)-(d). The figures also show the estimated spectra obtained by direct
numerical simulation of the response of equation (1). This was computed by calculating
the time domain response and estimating the spectrum by a Fast Fourier Transform. The
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Figure 1. Force-deflection curve of the bilinear spring. The stiffness is assumed to be unity when the deflection
amplitude is less than unity. For deflections having magnitude greater than unity the stiffness is assumed to equal
two. The restoring force shown is equal to w3(x+ eg(x)) in equation (1).
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Figure 2. Predicted power spectra for the bilinear system. The results shown are equal to log;o (D, (@)/ ;).
The spectra are thus normalized relative to the spectrum of the input signal. Solid curves (——) are the results
of time domain simulations, and dashed curves (---) are the results of equation (22). The power spectra of the
input signal are: (a) @,=0-0001; (b) &,=0-001; (c) @,=0-004, (d) ®,=0-01.

figures show that the power spectrum exhibits a broadened shape when the non-linearity
is significant. The effect of the non-linear restoring force on the spectrum shape is depicted
extremely well by the approximate method of equation (22).

The primary discrepancy appears in Figures 2(c) and (d), where the approximate expres-
sion in equation (22) predicts a significant peak at 1 rad/s. Since neither solution is exact,
it is desirable to employ a third solution method to examine this effect.

5. CONCLUSIONS

An approximate method has been proposed for estimating the response power spectral
density of a non-linear oscillator. The approach is based on considering the non-linear
system to behave as a linear system having a randomly varying natural frequency. The
natural frequency of the linear system is assumed to depend on the envelope of the non-
linear response for which the probability density can be estimated. The result is a simple
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expression for the response spectrum in the form of an integration over the envelope
probability density. Comparisons of results obtained by the present approximate method
with those obtained by numerical simulations show excellent agreement.
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